Exclusive Study of $(g-2)_{\mu}$ HVP Aaron S. Meyer (ameyer@quark.phy.bnl.gov) Brookhaven National Laboratory September 23, 2019 Lattice X Workshop 2019 - BNL #### The RBC & UKQCD collaborations #### BNL and BNL/RBRC Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni <u>UC Boulder</u> Oliver Witzel CERN Mattia Bruno #### Columbia University Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jigun Tu Bigeng Wang Tianle Wang Yidi Zhao #### University of Connecticut Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu #### **Edinburgh University** Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi <u>KEK</u> Julien Frison University of Liverpool Nicolas Garron MIT David Murphy <u>Peking University</u> Xu Fena <u>University of Regensburg</u> <u>Christoph Lehner (BNL)</u> #### **University of Southampton** Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda Stony Brook University Jun-Sik Yoo Sergey Syritsyn (RBRC) #### Outline - ▶ Muon g 2 Experiment - ▶ Motivation from muon g-2 - ▶ Tensions in $\pi\pi$ Scattering - Error Budget and LQCD Strategy - Correlation Function Spectrum & Overlap - Lattice Parameters - GEVP Spectrum & Overlaps - \blacktriangleright $\pi\pi$ Scattering Phase Shift - 4π Correlation Functions - Bounding Method and the Muon HVP - Correlation Function Reconstruction - ▶ (Improved) Bounding Method - Results - Conclusions/Outlook # Introduction ## Muon Anomalous Magnetic Moment Experiment High-precision experiment of spin precession relative to momentum direction in storage ring Anomalous frequency $\omega_{\it a}= rac{g-2}{2} rac{eB}{m}=a_{\mu} rac{eB}{m}$ Sensitive to new physics, and also discrepant with experiment! Aaron S. Meyer Section: Introduction 3/35 ## Fermilab Muon g-2 Experiment Experiment has come a long way (and so has theory!) Aiming for a 4× improvement in uncertainty over the BNL result Aaron S. Meyer Section: Introduction 4/35 ## Muon g-2 Theory Error Budget | Contribution | $Value\times\!10^{10}$ | Uncertainty $\times 10^{10}$ | | |-------------------------|------------------------|------------------------------|---| | QED | 11 658 471.895 | 0.008 | = | | EW | 15.4 | 0.1 | | | HVP LO | 692.5 | 2.7 | } | | HVP NLO | -9.84 | 0.06 | > | | HVP NNLO | 1.24 | 0.01 | | | Hadronic light-by-light | 10.5 | 2.6 | | | Total SM prediction | 11 659 181.7 | 3.8 | | | BNL E821 result | 11 659 209.1 | 6.3 | | | Fermilab E989 target | | pprox 1.6 | | Experiment-Theory difference is $27.4(7.3) \implies 3.7\sigma$ tension! Aaron S. Meyer Section: Introduction 5/35 #### Tensions in Experiment R-ratio data for $ee \to \pi\pi$ exclusive channel, $\sqrt{s}=0.6-0.9~{\rm GeV}$ region Tension between most precise measurements (BABAR/KLOE) R-ratio a_μ^{HVP} uncertainty < difference in this channel Avoid tension by computing precise lattice-only estimate of a_{μ}^{HVP} Use lattice QCD to inform experiment, resolve discrepancy Aaron S. Meyer Section: Introduction 6/35 #### Exclusive Channels in the HVP Correlator has large statistical error in long-distance region, but contributions from high energy states are exponentially suppressed Long distance correlator dominated by two-pion states, but overlap of vector current with two-pion states is minimal Aaron S. Meyer Section: Introduction 7/35 #### Exclusive Channels in the HVP Correlator has large statistical error in long-distance region, but contributions from high energy states are exponentially suppressed Long distance correlator dominated by two-pion states, but overlap of vector current with two-pion states is minimal #### Strategy: - Construct & measure operators that overlap strongly with $\pi\pi$ states - Correlate these operators with the local vector current - ▶ a_{μ}^{HVP} computed by integrating with time-momentum representation kernel, $a_{\mu}^{HVP} = \sum_{t} w_{t}C(t)$ [D.Bernecker & H.Meyer, 1107.4388 [hep-lat]] Aaron S. Meyer Section: Introduction 8 / 35 # Computation Setup #### **Ensemble Details** Computed on 2+1 flavor Möbius Domain Wall Fermions for valance and sea, M_π at physical value on all ensembles Computations using distillation setup 24^3 and 32^3 ($+48^3$) ensembles \rightarrow infinite volume limit 48^3 and 64^3 ($+96^3$) ensembles \rightarrow continuum limit Compare results of explicit calculation of finite volume results to Luscher + Gounaris-Sakurai prediction [H.Meyer, 1107.4388[hep-lat]] Not presented here, see [C.Lehner, Lattice 2018] #### **Operators** Operators constructed in I=1, P-wave channel to impact upon HVP_μ Designed to have strong overlap with specific target states, but all operators unavoidably couple to all states in HVP spectrum #### Vector current operators: ▶ Local $$\mathcal{O}_{J_{\mu}} = \sum_{\mathbf{x}} \bar{\psi}(\mathbf{x}) \gamma_{\mu} \psi(\mathbf{x}), \ \mu \in \{1, 2, 3\}$$ • Smeared $$\mathcal{O}_{j_{\mu}} = \sum_{xyz} \bar{\psi}(x) f(x-z) \gamma_{\mu} f(z-y) \psi(y)$$ 2π operators with \mathcal{O}_n given by $\vec{p}_{\pi} \in \frac{2\pi}{I} \times \{(1,0,0),(1,1,0),(1,1,1),(2,0,0)\}$ $$\mathcal{O}_n = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2$$ Also test two 4π operators with $\vec{p}_{\pi} = \frac{2\pi}{L} \times (1,0,0)$: $$\mathcal{O}_{4\pi} = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2 \left| \sum_{xy} \bar{\psi}(x) f(x-y) \gamma_5 \psi(y) \right|^2$$ Correlators arranged in a $N \times N$ symmetric matrix: ## Generalized EigenValue Problem (GEVP) Generalized EigenValue Problem to estimate overlap with vector current & energies $$C(t) V = C(t + \delta t) V \Lambda(\delta t)$$ $$\Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$, $V_{im} \propto \langle \Omega | \mathcal{O}_i | m \rangle$ C(t) is the matrix of correlation functions from previous slide Compute at fixed δt , vary t: plateau for large t From result, reconstruct exponential dependence of local vector correlation function $$C_{ij}^{latt.}(t) = \sum_{i}^{N} \langle \Omega | \mathcal{O}_{i} | n \rangle \langle n | \mathcal{O}_{j} | \Omega \rangle e^{-E_{n}t}$$ In theory, infinite number of states contribute to correlation function In practice, only finite N necessary to model correlation function \implies finite GEVP basis is sufficient ## GEVP Results - $J_{\mu} + 2\pi$ Operators only 6-operator basis on 48I ensemble: local+smeared vector, $4\times(2\pi)$ Data points from solving GEVP at fixed δt $$C(t_0) V = C(t_0 + \delta t) V \Lambda(\delta t), \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$ Excited state contaminations decay as $t_0, \delta t \to \infty$ moving right on plot \implies asymptote to lowest states' spectrum & overlaps Statistics+systematics; Left: Spectrum; Right: Overlap with local vector current Aaron S. Meyer Section: Computation Setup 13/35 #### Phase Shift Compute $\pi\pi$ scattering phase shifts in $\mathit{I}=1$ channel from spectrum Statistics + systematics Compare to simple Breit-Wigner parametrization and pheno (courtesy of M.Bruno) Good agreement with pheno for $32ID,\ 48I,\ 64I$ 24ID: remnant excited state contaminations, still to be removed Scattering phase shift results to appear as part of series of papers by RBC+UKQCD #### Phase Shift Compute $\pi\pi$ scattering phase shifts in $\mathit{I}=1$ channel from spectrum Statistics + systematics Compare to simple Breit-Wigner parametrization and pheno (courtesy of M.Bruno) Good agreement with pheno for 32ID, 48I, 64I 24ID: remnant excited state contaminations, still to be removed Scattering phase shift results to appear as part of series of papers by RBC+UKQCD Aaron S. Meyer Section: Computation Setup 15/35 ## Group Theory & Contraction Engine ## Group Theory & Contraction Engine ## Group Theory & Contraction Engine #### 4π Contractions #### 4π Contractions cont... #### 4π Contractions cont... cont... ## GEVP Results - 4π Operators Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold Results unaffected by inclusion of 4π operators, but states resolvable #### GEVP Results - 4π Operators Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold Results unaffected by inclusion of 4π operators, but states resolvable Overlap of 4π states with local vector current unresolvable ## GEVP Results - 4π Operators Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold Results unaffected by inclusion of 4π operators, but states resolvable Overlap of 4π states with local vector current unresolvable Overlap of states with 4π operator significant - \implies 4π state safely negligible in local vector current - \implies Will be neglected in all of following analysis Aaron S. Mever # Correlator Reconstruction and Bounding #### Correlation Function Reconstruction - 48I Plotted: (weight kernel) imes (correlation function); integral o a_{μ}^{HVP} GEVP results to reconstruct long-distance behavior of local vector correlation function needed to compute connected HVP Explicit reconstruction good estimate of correlation function at long-distance, missing excited states at short-distance More states \implies better reconstruction, can replace C(t) at shorter distances #### Improved Bounding Method Use known results in spectrum to make a precise estimate of upper & lower bound on a_{μ}^{HVP} [RBC (2017)] $$\widetilde{C}(t; t_{\mathsf{max}}, E) = \left\{ egin{array}{ll} C(t) & t < t_{\mathsf{max}} \ C(t_{\mathsf{max}}) \mathrm{e}^{-E(t - t_{\mathsf{max}})} & t \geq t_{\mathsf{max}} \end{array} ight.$$ Upper bound: $E \leq E_0$, lowest state in spectrum Lower bound: $E \ge \log[\frac{C(t_{\text{max}})}{C(t_{\text{max}}+1)}]$ BMW Collaboration [K.Miura, Lattice2018] takes $E \to \infty$ With good control over lower states in spectrum from exclusive reconstruction, improve bounding method [RBC/UKQCD 2018 (CL@KEK Feb 2018)]: Replace $C(t) o C(t) - \sum_{n}^{N} |c_n|^2 e^{-E_n t}$ and apply bounding procedure for $a_\mu - \delta a_\mu$ - \implies Long distance convergence now $\propto e^{-E_{N+1}t}$, lower bound falls faster - ⇒ Smaller overall contribution from neglected states After bounding, add back $\delta a_{\mu} = \sum_{t=t_{\max}}^{\infty} w_t \sum_{n}^{N} |c_n|^2 e^{-E_n t}$ ``` No bounding method: a_{\max}^{HVP} = 638(21) Bounding method t_{\max} = 3.3 \text{ fm}, no reconstruction: a_{\mu}^{HVP} = 626.5(8.6) Bounding method t_{\max} = 3.0 \text{ fm}, 1 state reconstruction: a_{\mu}^{HVP} = 626.5(8.6) Bounding method t_{\max} = 2.9 \text{ fm}, 2 state reconstruction: a_{\mu}^{HVP} = 627.5(7.7) Bounding method t_{\max} = 2.2 \text{ fm}, 3 state reconstruction: a_{\mu}^{HVP} = 628.0(4.2) Bounding method t_{\max} = 1.8 \text{ fm}, 4 state reconstruction: a_{\mu}^{HVP} = 626.2(3.9) ``` Bounding method gives factor of 3 improvement over no bounding method Improving the bounding method increases gain to factor of 5, including systematics Improvement should make all-lattice computation of a_{μ}^{HVP} competitive with R-ratio by 2020 #### Error Budget and Timeline Update to RBC-UKQCD calculation including exclusive study in preparation \implies on target for precision improvement on a_{μ}^{HVP} at 5×10^{-10} level Further reduction will require full RBC-UKQCD program of computations Work on the exclusive channel study using bounding method has led to world-first estimation of finite volume corrections to $a_{\iota\iota}^{HVP}$ at physical M_π Complete analysis with full suite of systematic improvements ongoing \implies precision improvement $\times 10$ over original, target error on $a_{\mu\nu}^{HVP}$ at 1×10^{-10} Compare to dispersive $(3-5) \times 10^{-10}$ # **Conclusions** #### Conclusions Pion scattering exlusive study poised to improve theory preicision in $(g-2)_{\mu}$: - Dispersive approaches have unresolved tension in $\pi\pi$ scattering region, circumvented by LQCD calculation - ► Computed $2\pi \to 4\pi$, $4\pi \to 4\pi$ correlation functions to show explicitly that 4π state has negligible effect on HVP at physical M_π - Study of exclusive channels able to significantly reduce statistical uncertainty on an all-lattice computation of a_t^{HVP} - \implies expect to reach precision of $O(5 \times 10^{-10})$ by the end of year - \implies target $O(1 \times 10^{-10})$ for all-lattice calculation - Part of ongoing lattice study to address all lattice systematics in RBC+UKQCD HVP computation (see [C.Lehner, Lattice 2019]) - ▶ New data on 64³ ensemble being analyzed - Paper in progress; posting planned before end of year #### Thank you! Aaron S. Meyer Section: Conclusions 35 / 35 # **BACKUP** #### Error Budget | $a_{\mu}^{\text{ud, conn, isospin}}$ | $202.9(1.4)_S(0.2)_C(0.1)_V(0.2)_A(0.2)_Z$ | $649.7(14.2)_S$ $2.8)_C(3.7)_V(1.5)_A(0.4)_Z(0.1)_{E48}(0.1)_{E64}$ | |--|---|---| | $a_{\mu}^{\text{s, conn, isospin}}$ | $27.0(0.2)_S(0.0)_C(0.1)_A(0.0)_Z$ | $53.2(0.4)_S(0.0)_C(0.3)_A(0.0)_Z$ | | a.c, conn, isospin | $3.0(0.0)_S(0.1)_C(0.0)_Z(0.0)_M$ | $14.3(0.0)_S(0.7)_C(0.1)_Z(0.0)_M$ | | a uds, disc, isospin | $-1.0(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z$ | $-11.2(3.3)_{\rm g}(0.4)_{\rm V}(2.3)_{\rm L}$ | | a QED, conn | $0.2(0.2)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$ | $5.9(5.7)_{\rm S}(0.3)_{\rm C}(1.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(1.1)_{\rm E}$ | | $a_{\mu}^{\text{QED, disc}}$ | $-0.2(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$ | $-6.9(2.1)_S(0.4)_C(1.4)_V(0.0)_A(0.0)_Z(1.3)_E$ | | $a_{\mu}^{\text{uds, disc, isospin}}$ $a_{\mu}^{\text{QED, conn}}$ $a_{\mu}^{\text{QED, disc}}$ $a_{\mu}^{\text{QED, disc}}$ a_{μ}^{SIB} $a_{\mu}^{\text{udsc, isospin}}$ | $0.1(0.2)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_{E48}$ | $10.6(4.3)_{S}(0.6)_{C}(6.6)_{V}(0.1)_{A}(0.0)_{Z}(1.3)_{E48}$ | | a udsc, isospin | $231.9(1.4)_S(0.2)_C(0.1)_V(0.3)_A(0.2)_Z(0.0)_M$ | $705.9(14.6)_S(2.9)_C(3.7)_V(1.8)_A(0.4)_Z(2.3)_L(0.1)_{E48}$ | | | | $(0.1)_{E64}(0.0)_{M}$ | | $a_{\mu}^{\text{QED, SIB}}$ $a^{\text{R-ratio}}$ | $0.1(0.3)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_E(0.0)_{E48}$ | $9.5(7.4)_S(0.7)_C(6.9)_V(0.1)_A(0.0)_Z(1.7)_E(1.3)_{E48}$ | | $a_{\mu}^{\mathrm{R-ratio}}$ | $460.4(0.7)_{RST}(2.1)_{RSY}$ | | | a_{μ} | $692.5(1.4)_S(0.2)_C(0.2)_V(0.3)_A(0.2)_Z(0.0)_E(0.0)_{E48}$ | $715.4(16.3)_S(3.0)_C(7.8)_V(1.9)_A(0.4)_Z(1.7)_E(2.3)_L$ | | | $(0.0)_b(0.1)_c(0.0)_{\overline{S}}(0.0)_{\overline{Q}}(0.0)_M(0.7)_{RST}(2.1)_{RSY}$ | $(1.5)_{E48}(0.1)_{E64}(0.3)_{b}(0.2)_{c}(1.1)_{\overline{S}}(0.3)_{\overline{Q}}(0.0)_{M}$ | | | | | TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text. [Blum et al., (2018)] Full program of computations to reduce uncertainties: Reduce statistical uncertainties on light connected contribution Compute QED contribution Improve lattice spacing determination Finite volume and continuum extrapolation study Aaron S. Meyer Section: BACKUP 37/35 First constrain the p-wave phase shift from our $L=6.22~\mathrm{fm}$ physical pion mass lattice: $E_{\rho} = 0.766(21) \text{ GeV (PDG } 0.77549(34) \text{ GeV)}$ $\Gamma_{o} = 0.139(18) \text{ GeV (PDG } 0.1462(7) \text{ GeV)}$ [Lehner, Mainz 2018] Aaron S. Meyer Section: BACKUP 38 / 35 Predicts $|F_{\pi}(s)|^2$: We can then also predict matrix elements and energies for our other lattices; successfully checked! [Lehner, Mainz 2018] Aaron S. Meyer Section: BACKUP 39/35 #### Finite Volume Corrections on the Lattice Complete error budget needs extrapolation to infinite volume #### FV shift can be measured directly from results of exclusive study - \implies First time this shift resolved from zero at physical $M_{\pi}!$ - \implies Previous bound at 10(26) \times 10⁻¹⁰, $M_{\pi} = 146 \text{ MeV} [1805.04250[\text{hep-lat}]]$ Can compare FV shift predictions from phenomenological estimations: Gounaris-Sakurai-Lüscher, proposed by H.Meyer [Phys.Rev.Lett. 21, 244; Nucl.Phys.B 354; Phys.Rev.Lett. 107, 072002] and scalar QED $$a_{\mu}^{HVP}(L=6.2~{\rm fm}) - a_{\mu}^{HVP}(L=4.7~{\rm fm}) = \left\{ \begin{array}{cc} 21.6(6.3) \times 10^{-10} & \text{LQCD} \\ 20(3) \times 10^{-10} & \text{GSL} \\ 12.2 \times 10^{-10} & \text{sQED} \end{array} \right.$$ Good agreement with GSL in range of energies probed by LQCD Aaron S. Meyer Section: BACKUP 40/35